JOURNAL

OF THE AMERICAN CHEMICAL SOCIETY

Registered in U.S. Patent Office. © Copyright, 1977. by the American Chemical Society

Volume 99, Number 6

MARCH 16, 1977

Ground States of Molecules. 37.¹ MINDO/3 Calculations of Molecular Vibration Frequencies

Michael J. S. Dewar* and George P. Ford

Contribution from the Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712. Received July 13, 1976

Abstract: MINDO/3 calculations of molecular vibration frequencies are reported for 34 molecules for which detailed experimental data are available. The agreement is satisfactory, becoming good if allowance is made for systematic deviations for specific types of vibration.

The primary goal of the studies reported in this series of papers is the development of theoretical procedures accurate enough and reliable enough to provide useful information concerning the mechanisms of chemical reactions and the properties of transient intermediates in them. Extensive tests of our latest procedure (MINDO/ 3^2) have given encouraging results³ for a wide variety of molecular properties, including heats of formation,² geometries,² dipole moments,² first ion-ization potentials,² polarizabilities,⁴ hyperpolarizabilities,⁵ nuclear quadrupole coupling constants,6 ESCA chemical shifts,⁷ and the electronic band structure of polymers.⁸ The mechanisms predicted for nearly 200 reactions have also been consistent with the available experimental data.^{3,9} There is, however, an inevitable uncertainty concerning predictions based on calculations by an empirical procedure outside the areas where it has been thoroughly tested. Since most of the available experimental data refer to stable species represented by local minima on the potential surface, most of the tests of MINDO/3 refer to stable species. The only tests so far carried out for the intermediate sections of potential surfaces have been comparisons of calculated and observed activation energies for reactions. It would greatly strengthen confidence in MINDO/3 predictions for these regions if additional tests could be applied.

The major sources of experimental data in this connection refer to molecular vibration frequencies (indicating the form of potential surfaces in the vicinity of minima), activation parameters (in particular entropies of activation), and kinetic isotope effects. All these quantities, other than enthalpies of activation, are related and can be calculated via the partition function if the vibration frequencies are known.

Procedures for calculating molecular vibration frequencies by MO methods are well established and such calculations have been carried out for several small polyatomic molecules by the EHT,¹⁰ CNDO/2,¹¹ INDO,¹² MINDO/2,^{11,12,13} and RH¹⁴ (Roothaan¹⁵-Hall¹⁶) methods and also for several hydrocarbons by MINDO/3.¹⁷ Here we report the results of a detailed MINDO/3 study of 34 polyatomic molecules for which apparently reliable experimental vibration frequencies and vibrational assignments are available. Since these data encompass 54 different types of vibration and over 500 individual frequencies, comparison of our results with experiment should provide a good test of MINDO/3 in this connection.

It may be noted that calculations of force constants for normal modes of vibration have been carried out routinely for some time in these laboratories in applying the McIver-Komornicki¹⁸ criterion to putative transition states.

Computational Procedure

The calculations were carried out by the method used by McIver and Komornicki^{18,19} for MINDO/2 calculations of vibration frequencies. Using Cartesian coordinates, first derivatives of the energy are found analytically and second derivatives by finite difference. The matrix of second derivatives (Hessian matrix) is then weighted and used with the standard GF formalism²⁰ to obtain the frequencies and normal modes. In the case of compounds containing third-row elements (S, Cl), both first and second derivatives of the energy were found by finite difference.

In order to ensure sufficient accuracy in the calculations of derivatives, a relatively small displacement (0.005 Å) and a correspondingly more stringent criterion of SCF convergence were used in each case. Under these conditions the six vibration frequencies corresponding to translation or rotation, while never zero, were usually less than 10 cm⁻¹ and only rarely greater than 30 cm^{-1} , the method using analytical derivatives being marginally better in this respect. The magnitude of these spurious frequencies could be further reduced by using a still more stringent SCF criterion. This was not done since previous studies had indicated that it leads to no significant change in the real frequencies.

Results

The calculated and observed frequencies are presented in Table I and compared graphically in Figure 1. The calculated values for ethane, ethylene, acetylene, and benzene are those

Table I. Comparison of Calculated (MINDO/3) and Observed Molecular Vibration Frequencies

			Freq, cm ⁻¹				_		Freq, cm ⁻¹		
Molecule and point group		Assignment	Exptl	MINDO/ 3ª	Ref	Molecule and point group		Assignment	Exptl	MINDO/ 3 ^a	Ref
$H_{2}O; C_{2}v$	a,	s stretch	3657	4022	b			SH bend	802	801	
		Bend	1595	1537				CS stretch	710	576	
	bı	a stretch	3756	4021			a'	CH_3 d stretch	3012	3494	
$H_2S; C_{2\nu}$	a ₁	s stretch	2615	2638	b			CH ₃ d delorm	956	759	
		Bend	1183	897				Torsion	200^{f}	160	
	01	astretch	2020	2031	L	CH NH C.	a'	NH. s stretch	3361	3577	b
$NH_3; C_{3V}$	a 1	s deform	950	1114	D	01131012103		CH ₃ d stretch	2961	3309	
	е	d stretch	3444	3577				CH ₃ s stretch	2820	3398	
		d deform	1627	1517				NH_2 s cis	1623	1496	
$CO_2; D_{\infty h}$	Σ^+g	s stretch	1333 <i>c</i>	1443	b			CH_3 d deform	1475	1297	
	Πu_	Bend	667	575				CH ₃ rock	1130	1009	
	Σ_{u}	a stretch	2349	2337	L			CN stretch	1044	1250	
$CS_2; D_{\infty h}$	Σ⁺g	s stretch Bend	038 307	330	D			NH ₂ wag	780	650	
	$\Sigma_{u}^{\Pi_{U}}$	a stretch	1535	1425			a''	NH_2 a stretch	3427	3574	
HCN: C	-u Σ+	CH stretch	3311	3536	b			CH_3 d stretch	2985	1311	
1101(),000)	п	Bend	712	769	-			NH_{\star} twist	1335 <i>h</i>	1170	
	Σ^+	C≡N stretch	2097	2268				CH ₃ rock	980 h	841	
$CH_2O; C_{2\nu}$	a ₁	CH ₂ s stretch	2783	3332				Torsion	268	220	
		C=O stretch	1746	2006		$HC = CH; D_{\infty h}$	Σ_g^+	CH stretch	3374	3827	
	h	CH_2 s cis	1500	[3/4 3301			5 +	C==C stretch	1974	2237	D
	01	CH_2 a stretch CH, rock	1249	1046			2 u '	CH stretch CH hend	612	488	
	b,	CH_2 wag	1167	1076			п,	CH bend	730	885	
HCOOH; C_{s}	a'	OH stretch	3570	3942	b	$H_{2}C = C = 0; C_{2}$	а,	CH, s stretch	3071	3599	
		CH stretch	2943	3222		2	1	CO stretch	2152	2328	
		C=O stretch	1770	1941				Torsion	1388	1407	
		OH bend CH bend	1287	1274			h	CU stretch	3166	3639	
		C-O stretch	1105	1000			01	CH_2 a stretch CH_ rock	979	850	
		OCO deform	625	575				Deform	438	385	
	a''	CH bend	1033	936			b ₂	Deform	588	585	
		Torsion	638	529	,			CH ₂ wag	528	383	
$H_2C=N=N^2;C_{2\nu}$	a 1	CH_2 s stretch	3077	3513	a	$H_{3}CCN; C_{3\nu}$	a1	CH_3 s stretch	2954	3461	
		CH, s cis	1414 <i>e</i>	1490				CN stretch	2207 1385 <i>i</i>	2385	
		CN ^{stretch}	1170 <i>°</i>	1233				CC stretch	920	1079	
		CH_2 a stretch	3188	3554			e	CH ₃ d stretch	3009	3466	
		CH ₂ rock	1109	950 428				CH ₃ d deform	14480	1298	
		Deform	564	514				CH ₃ IOCK	362	377	
		CH ₂ wag	406	271		H C = C H C I C	a'	CH stretch	3125	3572	i
$CH_{3}Cl; C_{3v}$	a,	CH ₃ s stretch	2937 <i>c</i>	3496	b	$\Pi_2 C$ — ener, c_s	a	CH stretch	3086	3540	,
		CH_3 s deform	1355	1237				CH stretch	3037	3521	
		C-Cl stretch	732	809				CC stretch	1610	1832	
	e	CH_3 d shellen CH_3 d deform	1452	1286				CH bend	13/4	1272	
		CH ₃ rock	1017	784				CH bend	1036	863	
$CH_{A}; T_{d}$	a_1	s stretch	2917	3505	b			CC1 stretch	724	717	
· -	e	d deform	1534	1326				CCl bend	396	294	
	f ₂	d stretch	3019	3551			a	CH twist	943	913	
	.'		3691	3960	h			CH_2 wag CCl bend	621	542	
$CH_3OH; C_S$	a	CH _a d stretch	3000	3404	υ	$H_{a}C = CH_{a}; D_{a}h$	aa	CH, stretch	3026	3544	b
		CH s stretch	2844	3348			ъ	CC stretch	1623 <i>c</i>	1835	
		CH ₃ d deform	1477	1330				CH_2 s cis	1342	1296	
		CH_3 s deform	1455	1466			a _u հ	CH_2 twist	3103	3538	
		CH ₂ rock	1060	1243			01g	CH_2 a structure CH ₂ rock	1236	1024	
		CO stretch	1033	927			b, u	CH ₂ wag	949	979	
	a''	CH ₃ d stretch	2960	3337			b ₂ g	CH ₂ wag	943	811	
		CH ₃ d deform	1477	1289			0 ₂ u	CH_2 a stretch CH_2 rock	826	5557 697	
		Torsion	295f	275			b311	CH_2 s stretch	2989	3527	
CH ₃ SH: C.	a'	CH ₃ d stretch	3015	3509	g			CH_2 s cis	1444	1306	_
		CH_3 s stretch	2948	3479		$\bigcup O; C_{2u}$	a ₁	CH_2 s stretch	3006	3428	b
		SH stretch	2605	2602 1306				CH ₂ S CIS Ring stretch	1498	1335	
		CH_3 u uciorm CH_3 s deform	1332	1253				CH ₂ wag	1120	1206	
		CH ₃ rock	1072	837				Ring deform	877	982	

			Freq,	cm ⁻¹					Freq	, cm-1	
Molecule and point group		Assignment	Exptl	MINDO/ 3 ^a	Ref	Molecule and point group		Assignment	Exptl	MINDO/ 3 ^a	Ref
	a ₂	CH_2 a stretch CH_2 twist	3063 1300	3408 1040				CH ₃ rock Torsion	1179 242	$\begin{array}{r}1076\\148\end{array}$	
		CH ₂ rock	860	889		CH ₂ SCH ₂ : C ₂	a.	CH ₂ d stretch	2991	3507	m
	b,	CH_2 s stretch	3006	3423			1	CH ₃ s stretch	2916	3479	
		$CH_2 \ s \ c_{1s}$	1472	1090				CH ₃ d deform	1456	1306	
		Ring deform	892	955				CH_3 s deform	1317	1264	
	b,	CH_2 a stretch	3065	3430				CS stretch	691	731	
		CH_2 twist	1142	1048				CSC deform	282	204	
No. a		CH astrotob	3017	2500	ŀ		a 2	CH ₃ d stretch	30131	3493	
$\sum S_{1} C_{2\omega}$	a ₁	CH_2 s sheldin CH_s s cis	1471	1260	r			CH_3 d deform	14464	1292	
		CH_2 wag	1107	937				Torsion	1731	86	
		Ring stretch	1040	1522			b,	CH ₃ d stretch	2991	3506	
	0	Ring deform	626 3089	710				CH_3 s stretch	2852	3474	
	a ₂	CH_2 a structure CH_2 twist	971	1011				CH_3 a deform	1440	1233	
		CH ₂ rock	660	761				CH ₃ rock	972	825	
	bı	CH_2 s stretch	3017	3496				CS stretch	741	710	
		$CH_2 s cis$	1440	1314 915			b2	CH_3 d stretch	2991	3496	
		Ring deform	685	645				CH ₃ a aerorm	1434	1294	
	b ₂	CH ₂ a stretch	3089	3515				Torsion	182	95	
		CH ₂ twist	945	733			a'	CH stretch	3160	3582	n
N:	,	CH ₂ rock	825	708	1	< 0 ^{, N; C} ,		CH stretch	3128	3489	
ĽNH; C,	a	NH stretch	3346	3465 3424	b			CH stretch	3086	3486	
		CH_2 a stretch CH_3 s stretch	3015	3442				i.p. ring I	1560	1659	
		CH_2 s cis	1483	1317				i.p. ring II	1432	1323	
		Ring stretch	1210	1616				i.p. ring IV	1260	1317	
		NH bend CH, twist	1096	1159				CH bend	1217	1173	
		CH_2 wag	998	957				CH bend i p. ring V	1128	1072	
		Ring deform	856	812				i.p. ring VI	1035	984	
		CH_2 rock	772	681				i.p. ring VII	917	729	
	а	CH_2 a stretch	3079	3410			,,	i.p. ring VIII	840	714	
		CH_2 s cis	1462	1350			а	CH bend CH bend	898 702	816	
		Ring deform	1268	1100				CH bend	763	689	
		CH_2 twist	1237	972				o.p. ring I	630	526	
		NH bend	904	935				o.p. ring II	588	495	
		CH ₂ rock	820	793		$H_2C = C = CH_2;$	a 1	CH_2 s stretch	3015	3531	b
$C_2H_6; D_{3d}$	a ₁ g	CH ₃ s stretch	2954	3460	b	D_{2d}		CH_2 s cis	1443	1437	
		CH_3 s deform	1388	1466			b,	CH ₂ twist	865	748	
	a	Torsion	995 289	1196			b ₂	CH_2 s stretch	3007	3537	
	a ₂ u	CH_3 s stretch	2896	3456				CC stretch	1957	2208	
		CH ₃ s deform	1379	1328			e	CH_2 s cis CH_a stretch	3086	3549	
	eg	CH_3 d stretch	2969	3452			·	CH_2 rock	999	902	
		CH ₃ tock	11901	1056				CH ₂ wag	841	794	
	eu	CH ₃ d stretch	2985	3466				CCC bend	355	329	
		CH_3 d deform	1469 <i>c</i>	1314		$\mathrm{HC} = \mathrm{CCH}_{3}; C_{3\nu}$	a 1	CH stretch	3334	3797	b
	0	CH_3 fock	822	2200	L			$C \equiv C$ stretch	29180	2366	
$CH_3 OCH_3; C_{2V}$	a	CH_3 a stretch	2996	3354	D			CH ₃ s deform	1382	1381	
		CH ₃ d deform	1464	1447				C-C stretch	931	1116	
		CH ₃ s deform	1452	1312			e	CH_3 d stretcn CH_d deform	3008	3457	
		CH_3 rock	1244	1191				CH ₃ rock	1053	947	
		COC deform	418	319				CH bend	633	680	
	a ₂	CH ₃ d stretch	2952	3335				CCC bend	328	317	
		CH ₃ d deform	14641	1281		$\triangleright; D_{3h}$	a ₁	CH_2 s stretch	3038	3491	b
		CH ₃ rock	1150 2031	1071				UH_2 s cis Ring stretch	1479 <i>°</i> 1188	1291	
	b,	CH ₃ d stretch	2996	3386			a''	CH_2 twist	1126	961	
	-	CH ₃ s stretch	2817	3338			a 2	CH ₂ wag	1070 <i>i</i>	1010	
		CH ₃ d deform	1464	1500			a2''	CH_2 a stretch	3103	3509	
		CH_3 rock	1227	1305			e'	CH_2 is stretch	3025	3486	
	-	CC stretch	1102	1039			-	CH_2 s cis	1438	1338	
	b2	CH ₃ d stretch	2925	3343				CH ₂ wag	1029	968	
			1404	1200				King delorm	000	1031	

Dewar, Ford / MINDO/3 Calculations of Molecular Vibration Frequencies

			Freq,	cm ⁻¹					Freq,	cm -1	
Molecule and			1	MINDO/		Molecule and				MINDO/	
point group		Assignment	Exptl	34	Ref	point group		Assignment	Exptl	34	Ref
	e'′	CH_2 a stretch	3082	3484		CO O C	a ₁	CH stretch	3117	3536	р
		CH ₂ twist	1188	1041 692		CO CO 20		C=0 stretch	1852	1941	
	a'	CH_{2} fork	3001	3545	0			CH bend	1235	1283	
$\Pi_2 C = C \Pi C \Pi_3, C_S$	a	CH_2 a stretch	30171	3530	U			C-O stretch	1060	1041	
		CH, s stretch	2991	3459				C-C stretch	864	998	
		CH ₃ d stretch	2973	3452				i.p. ring II	632	554	
		CH ₃ s stretch	2932	3429			а	CH bend	403	559 871	
		C=C stretch	1653	1872			u ₂	o.p. ring I	768	696	
		CH_3 a deform	1439	1317				o.p. ring II	275	226	
		CH ₂ s deform	1378	1306			b,	CH stretch	3117	3520	
		CH bend	1298	1209				C=O stretch	1782	2006	
		CH ₂ rock	1174	1158				CH bend	1054	1280	
		CH ₃ rock	9451	951				C-C stretch	889	988	
		C-C stretch	428	840				i.p. ring II	697	601	
	a''	CH distretch	2953	3450				C=O bend	557	504	
	a	CH_3 d stretcen CH_3 d deform	1443	1309			b2	CH bend	839	833	
		CH ₃ rock	1045	973				C=O bend	642	590	
		CH ₂ twist	990	900				C=0 bena	1/3	111	
		CH_2 wag	912	853		; C ₂	a ₁	CH stretch	3154	3577	b
		CH bend	575	510		Sol		CH stretch	3140	3504	
		1 orsion	2010	24.01	h			i.p. ring II	1384	1394	
$CH_3COCH_3; C_{2V}$	a 1	CH_3 a stretch	2019	3481	D			i p. ring IV	1140	1291	
		CO_{3} stretch	1731	1947				CH bend	1066	1078	
		CH ₃ d deform	1435	1355				CH bend	995	1007	
		CH ₃ s deform	1364	1291				i.p. ring VII	871	701	
		CH ₃ rock	1066	986			a ₂	CH bend	8631	777	
		CC stretch	777	941				CH bend	728	623 504	
		CUC bend	385 20631	337			h	CH stretch	3161	3565	
	a 2	CH_3 d sheldh	1426	1299			01	CH stretch	3129	3502	
		CH ₃ rock	8771	791				i.p. ring II	1556	1670	
	b,	CH ₃ d stretch	3019	3480				CH bend	1267	1352	
		CH_3 s stretch	2937	3460				CH bend	1180	1108	
		CH_3 d deform	1410	1444				i.p. fing V	1040	1039	
		CH_3 s deform	1364	1258			h	CH bend	875	775	
		CH _a rock	891	875			02	CH bend	745	706	
		CO bend	530	480				o.p. ring II	603	484	
	b ₂	CH ₃ d stretch	2972	3468		6		CUlatratab	2126	2561	L
		CH ₃ d deform	1454	1304		; C ₂	a 1	CH stretch	3098	3501	D
		CH ₃ rock	1091	972		8		i.p. ring II	1409	1677	
		Torsion	109	403				i.p. ring III	1360	1348	
$C H \cdot C$	9	CH distretch	2077	3462	h			CH bend	1083	1058	
$C_{3}\Pi_{8}, C_{2V}$	a 1	CH_3 u stretch	2962	3457	υ			CH bend	1036	988	
		CH_2 s stretch	2887	3377				i p ring VII	608	460	
		CH ₃ d deform	1476	1393			a,	CH bend	903	802	
		CH_2 s cis	1462	1321			- 1	CH bend	688	712	
		CH_3 s deform	1392	1135				o.p. ring I	567	435	
		CC_3 fock	869	944			b,	CH stretch	3125	3558	
		CCC bend	369	354				CH stretch	3080	3490	
	a ₂	CH3 d stretch	2967	3454				CH bend	1256	1100	
		CH ₃ d deform	1451	1313				CH bend	1085	970	
		CH_2 twist	1278	1126				i.p. ring V	872	774	
		CH ₃ rock	940 216 f	840				i.p. ring VI	751	605	
	h.	CH, d stretch	2968	3460			b₂	CH bend	8671	795	
	01	CH ₃ s stretch	2887	3452				CH bena	/12	315	
		CH ₃ d deform	1464	1502				0.p. mg n	432	515	
		CH ₃ s deform	1378	1318		; C2	a 1	NH stretch	3408	3652	q
		CH ₂ wag	1338	1307				CH stretch	5130 3114	3503	
		CH rock	1054	1109 871		**		i.p. ring II	1472	1503	
	h.	CH ₃ d stretch	2973	34.59				i.p. ring IV	1384	1460	
	U 2	CH, a stretch	2968	3361				CH bend	1240	1311	
		CH ₃ d deform	1472	1316				i.p. ring V	1148	1067	
		CH ₃ rock	1192	1050				CH bend	1078	1027	
		CH ₂ rock	748	668				i.p. ring VI	883	715	
		1 orsion	2687	104			a_2	CLOBIN	044	139	

Journal of the American Chemical Society / 99:6 / March 16, 1977

			Freq, cm ⁻¹						Freq	Freq, cm ⁻¹	
Molecule and point group		Assignment	Exptl	MINDO/ 3ª	Ref	Molecule and point group	Molecule and point group		Exptl	MINDO/ 3 ^a	Ref
		CH bend	712	647			a2 u	CH bend	673	665	
		o.p. ring II	615	511			b, 11	CH stretch	3068	3474	
	b,	CH stretch	3105	3550				Ring deform	1010	843	
	-	CH stretch	3136	3511			b _{2g}	CH bend	995 i	877	
		i.p. ring I [,]	1529	1610			- 8	Ring deform	703 <i>i</i>	590	
		i.p. ring III	1416	1437			b ₂ u	Ring stretch	1310	1191	
		NH bend	1143	1194				CH bend	1150	1078	
		CH bend	1050	1109			e _{1g}	CH bend	849	820	
		CH bend	1015	1049			e, "	CH stretch	3063 <i>c</i>	3494	
		i.p. ring VII	870	708				Ring deform	1486	1484	
	b,	CH bend	840	752				CH bend	1038	1064	
		o.p. ring I	649	733			e, o	CH stretch	3047	3482	
		CH bend	734	650			- 6	Ring stretch	1596 <i>0</i>	1689	
		NH bend	558	472				CHbend	1178	1113	
	a, o	CH stretch	3062	3507	b			Ring deform	606	553	
, D _{6h}	15	Ring stretch	992	1189			e.,,	CH bend	975	868	
	a _{2g}	CH bend	1326	1192				Ring deform	410	389	

^a Calculated frequencies from this work except for CH₂=CH₂, CH₃CH₃, CH=CH, and C₆H₆ from ref 17 and CH₃C=CH, CH₂=C=CH₂, and CH₃CH₂CH₃ from unpublished work by M. J. S. Dewar and A. Komornicki. ^b Data from ref 21. ^c Band position uncertain due to Fermi resonance. ^d W. H. Fletcher and W. T. Thomson, J. Mol. Spectrosc., 25, 240 (1968). ^e These assignments have been reversed on the basis of the present calculations. ^f Torsion frequency calculated from microwave spectral data. ^g I. W. May and E. L. Pace, Spectrochim. Acta, Part A, 24, 1605 (1968). ^h Estimated by H. Wolff and H. Ludwig, J. Chem. Phys., 56, 5278 (1972); see discussion in ref 14. ⁱ Frequency estimated from an overtone or combination band. ⁱM. Z. El-Sabban and B. J. Zwolinski, J. Mol. Spectrosc., 27, 1 (1968). ^k O. P. Strausz, I. Safarik, W. B. O'Callaghan, and H. E. Gunning, J. Am. Chem. Soc., 94, 1828 (1972); K. Venkateswarlu and P. A. Joseph, J. Mol. Struct., 6, 145 (1970). ^I Result of a normal coordinate calculation. ^mY. Shiro, M. Ohsaku, M. Hayashi, and H. Murata, Bull. Chem. Soc. Jpn., 43, 609 (1970). ⁿ C. Pouchan, S. Senez, J. Raymond, and H. Sauvaitre, J. Chim. Phys., Phys. Chim. Biol., 71, 525 (1974). ^o B. Silvi, P. Labarbe, and J. P. Perchard, Spectrochim. Acta, Part A, 29, 263 (1973). ^pA. Rogstad, P. Klaboe, H. Baranska, E. Bjarnov, D. Christensen, F. Nicolaisen, O. F. Nielsen, B. N. Cyvin, and S. J. Cyvin, J. Mol. Struct., 20, 403 (1974); C. DiLauro, S. Califano, and G. Adembri, *ibid.*, 2, 173 (1968); P. Misone and P. Chiorboli, Spectrochim. Acta, Part A, 18, 1425 (1962). ^qA. Lautié and A. Novak, J. Chim. Phys., Phys.-Chim. Biol., 69, 1332 (1972).

reported previously.¹⁷ Where possible, the experimental frequencies and assignments are taken from the compilation by Shimanouchi.²¹ Those from more recent sources were adapted to Shimanouchi's formalism.

Discussion

The points in Figure 1 are more or less randomly scattered about the line of unit slope, except for the CH stretches whichare systematically overestimated by ca. 450 cm⁻¹. Regression analysis, excluding CH stretches, gave a line of slope $0.89 \pm$ 0.02 (99% confidence limits) while that for the CH stretches was 0.92 ± 0.18 . The percentage standard deviation for the first category was 9.5%. That for the CH stretches was 15.2%, but fell to 2.1% after systematic correction of the MINDO/3 frequencies by -455 cm⁻¹.

Table II shows a detailed breakdown of these results into various categories of vibrational types. The MINDO/3 values show systematic deviations for each type of vibration (cf. CH stretches). When an appropriate correction (indicated in the fifth column of Table II) is applied, the percentage standard deviation is greatly decreased (compare the last two columns of Table II). The corrections ($\delta \nu$) were calculated from the following expression.

$$\delta \nu = n^{-1} \sum_{i} \left(\nu_i^{\text{obsd}} - \nu_i^{\text{calcd}} \right) \tag{1}$$

where the sum is over the *n* vibrations of a given type.

The various types of vibration will now be discussed individually.

CH Stretching Vibrations. As noted above CH stretching modes are systematically overestimated, the exact magnitude of this error varying somewhat with the type of mode involved. Thus the analysis of 119 frequencies encompassing five different types led to an average error of 455 cm⁻¹ or 15.2% which, upon application of this correction, led to frequencies in error by only 2.1% and to much less than this when the

Figure 1. Plot of observed against calculated vibrational frequencies.

corrections were calculated for each type of mode individually.

Despite the systematic overestimation of these frequencies, almost all the major qualitative trends are well reproduced by the calculations. Thus the ordering $\nu_{CH_3 s \text{ stretch}} < \nu_{CH_3 d \text{ stretch}} < \nu_{CH_2 a \text{ stretch}} < \nu_{CH_2 a \text{ stretch}} < \nu_{CH}$

Dewar, Ford / MINDO/3 Calculations of Molecular Vibration Frequencies

1690

Type of vibration	No.	Obsd Mean value, cm ⁻¹	MINDO/3 Mean value	Correction ^a	% error ^b	% error ^c (corrected)
All CH modes	119	3027	3482	-455	15.2	2.1
CH stretch	32	3125	3539	-415	13.4	1.8
CH ₂ s stretch	18	3000	3478	-478	16.0	1.0
CH_2 a stretch	18	3076	3487	-411	13.4	1.5
CH ₃ s stretch	17	2902	3439	-537	18.6	1.2
CH ₂ d stretch	34	2988	3450	-462	15.5	1.5
OH stretch	4	3666	3986	-320	8.8	1.5
NH stretch d	4	3386	3567	-181	5.6	1.7
SH stretch	3	2615	2630	-15	0.8	0.6
CH bend	60	952	915	37	9.0	8.0
CH ₂ wag	19	974	899	75	10.1	6.6
CH ₂ s cis	17	1447	1337	110	8.9	47
CH ₂ twist	13	1103	968	135	14.4	7.8
CH ₂ rock	13	825	918	93	13.0	83
CH ₂ d deform	34	1456	1329	127	9.9	43
CH ₂ s deform	17	1384	1330	54	53	3.8
CH ₂ rock	34	1044	939	105	13.2	8.6
NH bend	4	925	940	-15	6.6	74
OH bend	3	1442	1392	51	3.6	0.6
C-C stretch	10	943	1053	-110	14.3	8.6
C = C stretch	7	1518	1693	-175	12.3	4.6
$C \equiv C$ stretch	2	2058	2302	-244	10.7	ρ
C-N stretch	2	1107	1242	-135	10.9	e
$C \equiv N$ stretch	2	2182	2326	-144	6.5	P
C-O stretch	6	1089	1061	28	84	87
C=O stretch	8	1839	1994	-154	9.5	4.8
C-S stretch	3 3	714	672	42	11.6	12.3
C = S stretch	2	1097	1023	64	5.8	e
C-Cl stretch	2	728	763	-35	7.5	P
CCC deform	7	364	339	25	7.8	4.2
Other						
Deformations ^f	8	462	423	39	11.8	8.9
3-ring deform	8	867	923	-56	16.1	15.1
3-ring stretch	4	1177	1625	-448	38.1	2.7
5-ring stretch + deform	41	1000	970	30	11.7	11.5
6-ring stretch + deform	12	1018	1004	14	9.7	10.1
CC torsion		214	129	85	41.4	12.2
CO torsion	4	345	267	78	24.7	11.5
CS torsion	3	185	114	71	40.4	14.7

^{*a*} Correction = $1/n \sum_i (\nu_i^{\text{obsd}} - \nu_i^{\text{calcd}})$. ^{*b*} $100[1/n \sum_i (\nu_i^{\text{obsd}} - \nu_i^{\text{calcd}})^2]^{1/2}/\bar{\nu}_{\text{obsd}}$. ^{*c*} $100[1/n - 1 \sum_i (\nu_i^{\text{obsd}} - \nu_i^{\text{calcd}} + \text{correction})^2]^{1/2}/\bar{\nu}_{\text{obsd}}$. ^{*d*} Includes data for NH stretch, NH₂ s stretch, and NH₂ a stretch. ^{*c*} Error not calculated for less than three data points. ^{*f*} Includes data for OCO, CNN, COC, CSC, CCO, and CCN deformations.

duced. In particular MINDO correctly predicts the antisymmetric vibrations to be higher than their symmetric counterparts although quantitatively this difference is somewhat underestimated. The trends in a particular vibration type are also correctly predicted. For example, the ordering among the CH stretch vibrations (acetylenic > 5 ring > 6 ring) is reproduced by MINDO/3.

Other X-H Stretching Modes. Like the CH stretching vibrations the OH and NH modes also seem to be systematically overestimated, in the case of the former by 320 cm^{-1} and the latter by 179 cm⁻¹. Unfortunately the relationship between the symmetric and antisymmetric modes in these cases is not well accounted for. Thus the symmetric and antisymmetric OH stretching modes in water are calculated to be almost degenerate whereas experimentally the latter is found almost 100 cm⁻¹ higher. A similar degeneracy is calculated for the symmetric and antisymmetric NH2 stretching modes in methylamine whereas the latter is observed to be 66 cm^{-1} higher. In contrast the SH stretch is calculated almost precisely, the average error in the three frequencies considered being 15 cm^{-1} or 0.8%. Furthermore, the observed symmetric, antisymmetric SH stretch separation in H_2S is almost exactly reproduced (obsd 11 cm⁻¹; calcd 13 cm⁻¹).

CH Bending Vibrations. The errors among the eight vibration types in this category (CH bend, CH₂ wag, CH₂ s-cis, CH₂ twist, CH_2 rock, CH_3 d deform, CH_3 s deform and CH_3 rock) fall in the range typical of the calculations as a whole, lying between 5.3% for the CH_3 s deform and 14.4% for the CH_2 twist. In contrast to the stretching vibrations, the calculations tend to underestimate these frequencies, although the error is not particularly systematic. The acetylenic CH bend was calculated less well (error 15.6%) than the same vibration in five- (6.2%) and six- (5.4%) membered rings in line with the known¹ tendency of MINDO/3 to fare less well with compounds containing a triple bond. A number of the larger deviations occurred in the CH2 wag and CH2 s-cis vibrations of three-membered rings which can almost certainly be attributed to coupling with adjacent ring stretching modes which MINDO seriously overestimates (see below).

Other X-H Bending Vibrations. The small number of results available for NH and OH bending vibrations suggests that these vibrations are calculated satisfactorily.

CX Stretching Vibrations. Vibrations in this group were typically overestimated. The exception for which we had reasonably extensive data was the C-O stretch. These results largely parallel the tendency of MINDO/3 to overestimate the

strengths of these bonds as shown by their calculated lengths. The particular stability of the C==C bond in MINDO/3 has already been noted.² One of the few precise linear relationships encountered in this work was found for the 7 C==C stretching frequencies for which a correlation coefficient of 0.998 with the observed frequencies was obtained. This is probably due to the predominance of a single force constant (f_{cc}) in determining these frequencies.

CCC Deformation. These deformations are calculated with excellent precision, the average error being only 25 cm^{-1} ; the largest deviation found was 55 cm⁻¹ for propene. Examination of the other deformations reveals comparable behavior.

Ring Stretching and Deformation Modes. The stretching vibration for three-membered rings is systematically overestimated by almost 500 cm^{-1} in the MINDO/3 calculation. This is not altogether unexpected as three-membered rings are known to be too stable in the MINDO approximation and in agreement with this rationalization the ring deformation modes are predicted satisfactorily. The five- and six-membered ring stretch/deformations are calculated satisfactorily with average errors of 30 and 14 cm^{-1} , respectively.

Torsions. Since the single bond rotational barriers¹ calculated in the MINDO/3 approximation are too low, it is not surprising that the corresponding torsional vibrational frequencies are similarly underestimated.

Conclusions

The overall agreement between the uncorrected MINDO/3 frequencies and experiment is satisfactory, given that the calculated values are based on harmonic force constants and given that similar RH calculations, close to the Hartree-Fock limit, commonly lead to vibration frequencies in error by $\pm 10\%$. The errors in the MINDO/3 values are moreover mostly systematic, similar deviations occurring for a given type of vibration in different molecules. When appropriate corrections are applied, the agreement with experiment becomes quite good (Table II). Since calculations of this kind can be carried out without difficulty and at little expense for quite large molecules,²² the results may be of practical value in assigning observed vibronic transitions and in helping to identify unknown species. We are currently studying in this way several transient molecules which have been observed only in matrices and whose identity is consequently uncertain, for example, the species claimed by Chapman et al.²³ to be benzocyclobutadiene.

Since the vibrational contribution to entropies of molecules becomes important only at very high temperatures, it seems likely that the accuracy attained here may be sufficient for the calculation of entropies of reaction and activation and for the estimation of other related quantities, e.g., specific heats and isotope effects. These problems will be considered in later papers of this series.

Acknowledgments. This work was supported by the Air Force Office of Scientific Research (Grant AFOSR 75-2749) and the Robert A. Welch Foundation (Grant F-126). The calculations were carried out using the CDC 6400/6600 computer at the University of Texas Computation Center.

References and Notes

- (1) Part 36: J. Am. Chem. Soc., in press.
- (2) R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1285, 1294, 1302, 1307, (1975); M. J. S. Dewar, D. H. Lo, and C. A. Ramsden, ibid., 97, 1311 (1975).
- See M. J. S. Dewar, Chem. Br., 11, 97 (1975).
- (4) M. J. S. Dewar, R. C. Haddon, and S. H. Suck, J. Chem. Soc., Chem. Commun., 611 (1974).
- (5) J. G. Bergman, M. J. S. Dewar, S. H. Suck, and P. K. Weiner, *Chem. Phys. Lett.*, 38, 226, 228 (1976).
- (6) M. J. S. Dewar, H. W. Kolimar, and S. H. Suck, J. Am. Chem. Soc., 97, 5590 (1975).
- (7) M. J. S. Dewar and D. H. Lo, Chem. Phys. Lett., 33, 298 (1975). (8) M. J. S. Dewar, S. H. Suck, and P. K. Weiner, Chem. Phys. Lett., 29, 220 (1974).
- (9) (a) M. J. S. Dewar and S. Kirschner, J. Am. Chem. Soc., 96, 5244, 5246, Kirschner, J. Am. Chem. Soc., 96, 6225 (1974); (d) R. S. Case, M. J. S. Dewar, S. Kirschner, R. Pettit, and W. Slegeir, *ibid.*, 96, 7581 (1974); (e) M. J. S. Dewar and H. W. Kollmar, *ibid.*, 97, 2933 (1975); (f) M. J. S. Dewar and W. Thiel, *ibid.*, **97**, 3978 (1975); (g) M. J. S. Dewar, A. C. Griffin, W. Thiel, and I. J. Turchi, *ibid.*, **97**, 4439 (1975); (h) P. K. Bischoff and M. J. S. Dewar, *Ibid.*, **97**, 2278 (1975); (i) M. J. S. Dewar and I. J. Turchi, *J. Chem.* Soc., Perkin Trans. 2, in press; (i) M. J. S. Dewar and D. Landman, J. Am. Chem. Soc., 99, 372 (1977); (k) M. J. S. Dewar, R. C. Haddon, A. Komor-nicki, and H. S. Rzepa, *ibid.*, in press; (I) unpublished work by S. B. Brown, F. Carrion, G. Ford, S. Kirschner, A. Komornicki, D. Landman, M. L. McKee, S. Olivella, and H. S. Rzepa
- (10) W. L. Bloemer and B. L. Bruner, J. Mol. Spectrosc., 43, 452 (1972).

- W. L. Bidenter and B. L. Buller, J. Mol. Spectrosc., 43, 432 (1972).
 K. Kozmutza and P. Pulay, *Theor. Chim. Acta*, 37, 67 (1975).
 B. Nelander and G. Ribbegård, J. Mol. Struct., 20, 325 (1974).
 J. T. Gleghorn and R. W. McConkey, J. Mol. Struct., 29, 133 (1975).
 P. Pulay and F. Török, J. Mol. Struct., 29, 239 (1975) and papers cited the struct. there.
- (15) C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).
- (16) G. G. Hall, Proc. R. Soc. London, Ser. A, 205, 541 (1951).
- (17) M. J. S. Dewar and A. Komornicki, J. Am. Chem. Soc., in press
- (18) J. W. McIver and A. Komornicki, J. Am. Chem. Soc., 94, 2625 (1972).
 (19) J. W. McIver and A. Komornicki, Chem. Phys. Lett., 10, 303 (1971).
- (20) E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, "Molecular Vibrations",
- McGraw-Hill, New York, N.Y., 1955. (21) T. Shimanouchi, "Tables of Molecular Vibrational Frequencies", National Standard Reference Data Series, National Bureau of Standards, Washington, D.C., 1972.
- (22) The time required for a complete vibrational calculation for CH₃CN on our CDC 6600 computer was 90 s.
- (23) O. L. Chapman, C. C. Chang, and N. R. Rosenquist, J. Am. Chem. Soc., 98, 261 (1976).